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1 Introduction 

Cyber-physical systems (CPS) are commonly used architectures for critical in-

frastructure applications such as smart urban environments. The Internet-of-Things 

(IoT) is a network based architecture in which physical devices, sensors, embedded 

electronics, software, vehicles, etc. can communicate and transfer data with each 

other over an internet connection. IoT technology is a subset of CPS in which phys-

ical procedures are controlled and affected by computational processes while the 

computations are simultaneously altered based on the physical system state. In ex-

pansive CPS designs, such as those required for IoT enabled urban ecosystem ap-

plications, expansive networks are implemented to collect, transfer, monitor, and 

analyze data. This data is processed for automated control applications, generate 

predictive models, and provide enhanced understanding for operators and consum-

ers. [39] 

For cyber-physical systems, as in control systems and critical infrastructure, en-

suring the resilience of a system is critical to its long-term efficiency and security. 

CPS uses many automated systems to perform tasks and handle anomalies. These 

systems can be very complex, have different methods of integration, and involve 

varying levels of human interaction. Resilience is a multi-disciplinary effort that 

ensures changes and anomalies experienced by a system are tolerated by the system 

design. Resilient control systems maintain system monitoring, awareness, cyber-

security, and decision making at an acceptable level of operation to facilitate normal 

and necessary functions.  

Ensuring the trustworthiness of data coming from the various devices, sensors 

and network traffic should be one of the top priorities in designing any cyber-phys-

ical system (CPS). Trustworthy sources ensures that the available data is being used 

efficiently and the outputs are accurate. This is especially important in smart city 
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infrastructure where outputs and decisions affect people’s daily lives. Untrustwor-

thy data can lead to poor automated system control, difficulty in decision making, 

and frustrating end-user experiences. This data is very often very large in scale and 

comes from heterogeneous sources. Moreover, information technology (IT) and op-

eration technology (OT) operators who now find themselves responsible for cyber-

security come from a variety of backgrounds, differing decision support require-

ments, and knowledge capabilities. To effectively abstract the complexity of 

cybersecurity and simultaneously address the variety of roles, knowledge, and need, 

a design is needed that performs much of the required analysis for the user and 

presents only relevant information in a consistent way. IoT infrastructure on a city-

wide scale requires many different data nodes in the form of devices and sensors to 

perform specific, individualized tasks. This means that the datasets created from a 

city-wide IoT system will be high-dimensional and heterogeneous.  

This chapter provides a summary and analysis of crucial concepts in understand-

ing cyber-physical degradation assessment, heterogeneous data-fusion, and visual-

ization under a smart city IoT architecture. These concepts will provide a basis for 

enhancing the effectiveness of human response to physical and cyber-events within 

the scope of smart city infrastructure. It is important to understand that CPS degra-

dation analytics provide the source information that a data-fusion engine will use to 

tailor context awareness to the human. Visualization presents this information to 

ensure a reproducible response for each operational role regardless of background 

(e.g., cyber, operational, scientific, etc.) or level of performance or the humans in-

volved at any particular time. 

1.1 What are Cyber-Physical Systems? 

Cyber-physical systems are usually used to monitor and control critical infra-

structures. Examples include smart grids, autonomous vehicles, and smart build-

ings. CPS combines physical components and computer-controlled algorithms for 

monitoring and process control. CPS integration is achieved through the implemen-

tation of feedback loops in which both the cyber and physical aspects of a system 

affect each other. The physical processes are monitored and controlled by the com-

putational algorithms embedded in the cyber aspects of a CPS, and computations 

are simultaneously altered by the physical state of the CPS. This is accomplished 

through data analysis, system modelling, both data-driven and physical, and data 

fusion to enhance knowledge discovery from heterogeneous sources of cyber-phys-

ical data. In general, OT systems are one type of CPS. Processing heterogeneous, 

high-dimensional data from acquisition through data-fusion is a critical task that 

must ensure capability and scalability in CPS. [5, 7] 
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The IoT is a subset of CPS. IoT architectures establish communication networks 

between multiple decentralized, heterogeneous CPS. In this sense, the IoT is the 

second layer of CPS that enables digital integration and communication. IoT appli-

cations are often provided by embedding sensors, software, devices for computa-

tional or networking applications, etc. into existing objects within CPS architec-

tures. These are usually physical objects that are not usually designed for 

computational tasks (appliances, toys, vehicles, etc.). The communication and data-

transfer between the various IoT devices takes advantage of pre-existing network 

infrastructure such as the internet, reducing overhead for large-scale distributed sys-

tem applications. [39] 

1.2 Challenges in CPS 

 Concern over cyber-attacks has led to the thoughtless proliferation of tools fo-

cused on addressing pressing cybersecurity needs without long-term considerations. 

Much of what has been developed originates in the IT sector, and has been inherited 

with little customization by the control systems world. As a result, control systems 

professionals who have not been traditionally responsible for security, now have a 

role in the cybersecurity of OT systems, and they lack tools customized to the OT 

environment. Therefore, it is safe to assume that various roles exist within the secu-

rity equation, and a different level of expertise is required for the many individuals 

working in these complex systems. Even within IT, the diversity of manufacturers, 

number of cyber security appliances installed, and sheer number of parameters mon-

itored can create data overload in the most adept user. This overload situation can 

grow as an increasing number of security solutions are fielded to protect the system, 
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each with its own stream of monitoring data. The resulting data deluge likely pro-

duces many false negatives because humans cannot examine all the data that has 

become available. Additionally, the common use of overly conservative alarm 

thresholds produces numerous false positives that human controllers learn to ignore 

since the majority are frivolous. 

Based upon cyber, physical, and interacting cyber-physical characterizations of 

both host and network patterns, CPS models can be used to distinguish conditions 

and behaviors indicative of a cyber-attack from benign, unintended actions or phys-

ical failures. As a feedback loop to recognize performance, latency and integrity 

will provide the fundamental attributes that will be correlated by measurable cyber-

physical parameters [3], [4], [5]. Through the use of leveraged and data-driven mod-

els, cyber-physical parameters specific to use cases can be evaluated to correlate 

performance impact. That is, given a change (normal or abnormal) in the cyber-

physical environment, unacceptable variations will be evaluated and codified. The 

resulting process will establish a network performance baseline, a direct measure-

ment of resilience, and a diverse approach to recognizing distributed threats across 

the interwoven layers of the OT/IT architecture. 

Computer networks remain the primary vector for cyber-attacks, and yet detect-

ing cyber-attacks over computer networks remains limited—“misuse-based intru-

sion detection” [1], which relies on static “signatures” of “known bad” activity, has 

significant value, but also remains blind to unknown attacks, and frequently even to 

slight variations on attacks. “Anomaly-based intrusion detection” [1], which ana-

lyzes statistical variations from “normal,” helps to address some of these issues [2], 

but is limited by the massive imbalance in “good” data to “bad” data in-training 

sets, the high cost of false positives to human operators, the so-called “semantic 

gap” between flagging anomalous events and understanding the cause of those 

events, and the raw diversity of network attacks [2]. Moreover, the extremely high 

and diverse types of network traffic and computing environments present in IoT 

infrastructure makes these problems even worse. Indeed, many commercial solu-

tions are ineffective since these are often either not capable of performing on net-

works with bandwidths as high as those on IoT networks, or not tuned for such 

environments. A basic misapplication of the anomaly-detection approach is to as-

sume that all anomalous behaviors are necessarily suspicious. The terms, “anoma-

lous,” “errant,” and “malicious” all have different meanings, but “malicious” carries 

a value judgment with it. Normal activities may vary significantly with software 

upgrades and network changes. 

Combining multiple heterogeneous data sources can introduce multiple chal-

lenges for data-fusion, system-modeling, and visualization applications. The col-

lected datasets may contain information with varying resolutions, is incomplete or 

uncertain, or is unsynchronized due to various offsets in the measurement devices. 

Every node in a CPS, whether it is recording data or providing an end-user interface, 

will have its own method of recording and saving data. So within a large-scale IoT 

system, the vast amounts of available data sources can provide their data in many 

different formats that must be combined so that an analytics model can make sense 
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of it. Additionally, the available data is a mix of cyber-data, e.g. network traffic, 

and physical data, e.g. temperature readings. Both types of data are part of the same 

system and should be looked at as a whole, rather than separate entities with their 

own architecture. Data-fusion techniques combine heterogeneous sources of data 

into a new representation by exploiting existing interdependencies in the dataset. 

These techniques are used to help improve the performance, scalability, and relia-

bility of the control and monitoring analytics systems that implement these datasets. 

 

2 Cyber-Physical Analytics for Resilience and Assessment  

This section outlines the anomaly detection analytics to be used in combination 

with high-fidelity models to recognize and mitigate cyber-attacks and enhance sys-

tem resilience. Providing complete, reliable, and actionable information is essential 

for system resiliency and decision-making within an IoT system. In order to ensure 

the trustworthiness of available sensors in an IoT system design, analytics that as-

certain accurate health measurements of sensors is essential. Failures within highly 

interdependent and complex environments can lead to cascading adverse conse-

quences. As the digital footprint of these environments has continued to evolve, the 

potential ramifications of conjoined CPS failures has not been considered and has 

instead become more obscure. If recognized and characterized quickly and consist-

ently at the source, however, the adverse effects can be localized and cascading 

failures prevented. With this focus in mind, methodologies should be implemented 

to characterize a diverse range of behaviors found on OT/IT networks and classify 

them according to their degree of normality. Application of these methodologies 

will lead directly to measurable improvements in system resilience. 

A cyber-physical approach towards IoT infrastructure will notably ascertain 

degradation—both cyber and physical—to distinguish cyber-attack from physical 

failure. Information on blended security attacks (both cyber and physical) should 

also be characterized. Analytics systems should remain robust under various degra-

dation scenarios resulting in partial or unreliable information. IoT enabled sensors 

and devices, as well as the networks between them are susceptible to malicious tam-

pering, unforeseen failures, and accidents; as well as degradation that arises natu-

rally from normal operations. Robust cyber-physical analytics designs should en-

hance the response of decision-makers by identifying and providing actionable 

information about how and where degradation is occurring. 

 Computer networks within a system are often the primary vector for cyber-at-

tacks on IoT infrastructure. However, established intrusion detection system (IDS) 

methodologies are limited when it comes to distinguishing between anomalous and 

malicious network behavior. “Misuse-based intrusion detection” requires a priori 

knowledge of network traffic patterns that indicate malicious activities. This type 

of network monitoring, while useful, is unable to detect unknown, or sometimes 
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slightly altered, cyber-attacks. Another IDS scheme, “anomaly-based intrusion de-

tection,” implements various statistical metrics to determine how far off network 

traffic is from baseline activity. Statistical analysis is useful for mitigating the prob-

lems inherent in misuse-based IDS, but it introduces another problem with differ-

entiating between non-malicious anomalous traffic patterns from cyber-attacks 

identified by the IDS. Due to vast diversity of network traffic patterns, which is 

further exacerbated by the vast diversity of cyber-attacks and the large amounts of 

traffic inherent in a city-wide IoT system, many anomalous patterns can emerge that 

are not malicious in nature. Since the simple approach of assuming all anomalous 

network traffic is malicious is impractical at scale, false-positives flagged by an IDS 

requires some human analysis to understand the causes of the events and to provide 

the necessary response. This presents a further problem as backgrounds, knowledge, 

and physical capabilities vary among individuals. As such, wide-scale IDS systems 

for IoT applications should aim to provide as few, if any, false positives as possible. 

These systems should be able distinguish degradation arising from cyber-attacks 

and physical failures. Additionally, a design focus on quickly identifying and local-

izing failures enables fast and accurate response times for human operators. A de-

sign focused on localization can also help mitigate cascading failures. As IoT sys-

tems grow larger and more interconnected, the potentiality of one failure leading to 

other, possibly unforeseen, failures in multiple other areas increases. 

2.1 State Awareness and Anomaly Detection 

Developing an accurate state awareness system with robust anomaly detection 

techniques is crucial to providing users with the relevant information and models 

needed to recognize threats and coordinate effective responses. These systems are 

typically implemented either through data-driven or physics-based models. Data 

driven models encompass computational intelligence (CI) and statistical models. 

These designs use collected data to generate models that represent the system as it 

should be when fully-functional. These state estimations can be compared to current 

system states which can help identify when and where system anomalies are occur-

ring and predict how a system will behave in the future given the current state. Ad-

ditionally, there are data-driven models that use ‘online’ learning algorithms. These 

algorithms continue to refine their initial models using new data collected after de-

ployment. These algorithms allow the models to be further refined over time to bet-

ter handle new or unforeseen challenges/attacks. While data-driven system models 

are powerful tools for IoT analysis applications, there are some potential issues that 

should be kept in mind during the design process. Data-driven approaches use some 

form of pattern matching to build their models and therefore require large datasets 

describing the systems activity, with data on multiple safe/unsafe scenarios often 

being required. Not having enough training data can result in a model with poor 

performance leading to unsatisfactory results. This means that designing useful 
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models can require extensive, potentially cost-prohibitive, data collection. The pat-

tern matching nature of data-driven models means they are also susceptible to over-

fitting, where the trained model too closely resembles the training data.  Overfitting 

can cause the model to have very little room for error, meaning normal data patterns 

that were missing from the training data could be flagged as abnormal resulting in 

many false positives. Additionally, pattern matching schemes are susceptible to 

spoofing. Spoofing is when an attacker reverse engineers the model allowing them 

to know what inputs are needed to create a desired output. In CI applications, most 

CI models are ‘black-box’ algorithms. This means that observers can only know the 

inputs and outputs of the model but cannot get information about the model’s inner 

workings. This makes understanding and explaining the behavior of a model ex-

tremely difficult, if not impossible. 

Computational intelligence (CI) and machine-learning methods have been used 

to provide anomaly detection systems for a variety of applications. Artificial neural 

networks (ANNs), such as multilayer perceptron (MLP), are a popular machine-

learning technique that have been shown to provide excellent results in anomaly 

detection applications. In cybersecurity, ANNs have been used in anomaly-based 

network intrusion detection systems that can handle a large variety of cyber-attacks 

[8]. Designs were presented in literature that were able to achieve very high detec-

tion rates (~99%) [9] [10] [11] [12] on various datasets. Additionally, [13] [10] pre-

sented ANN designs that can not only achieve high-detection rates, but also report 

very few false positives and false negatives (~0.1%). Recently, [12] presented an 

improvement to standard MLP anomaly detection in medical CPS by reducing the 

detection process to multiple 2-class classifications to improve accuracy and reduce 

false reports. ANNs used for anomaly detection systems in control system architec-

tures, such as smart grids, have been presented with relatively high detection rates 

[14] [15] [16], though the reported false alarm rates are often high as well. Integrity 

attacks can compromise a system by spoofing system data so that it appears to an 

operator that the system is in a safe-state, while an attacker gains access to critical 

resources. An ensemble modeling design, where multiple models are aggregated to 

increase accuracy, was presented in [17] for these types of anomalies that performed 

better than other prior MLP methods with a small percentage of false reports (~2%). 

Another area of CI that has shown promise in CPS anomaly detection is fuzzy 

logic. Fuzzy logic systems (FLSs) embed human understanding and knowledge into 

a system in the form of ‘if-then’ rules. These rules are then converted into crisp 

values, which can then be used for decision-making tasks. Traditionally, the rule 

base for a FLS is derived from expert knowledge of the system, though since some 

CPSs can be extremely complex, various publications have explored adaptive fuzzy 

architectures that can generate their own rules [18] or allow them to be dynamically 

altered [19]. FLSs are grey-box algorithms, where some inner workings of the sys-

tem can be known but other aspects remain unknowable. This is an improvement 

over other CI algorithms in terms of understandability and system awareness. 

Recently, deep-learning neural network algorithms, such as convolutional and 

recurrent neural networks, have emerged as the state-of-the-art in machine-learning 
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due to their ability to produce more robust models than standard ANN architectures. 

Literature has presented deep learning algorithms for cyber-attack anomaly detec-

tion, showing robust detection against a variety of attacks on CPSs [20] [21]. Addi-

tionally, a simple convolutional neural network design was presented in [22] to 

monitor motor conditions in real-time with a high accuracy when tested on real-

world motor datasets. 

Classical CI algorithms are still in use, though in recent research they are mostly 

used for comparison and validation of newer CI methods. These include K-Nearest 

Neighbor (KNN) [23], Support Vector Machine (SVM) [23] [24], and Self-Organ-

izing Map (SOM) [25] [26]. 

Various other statistical modeling algorithms have been explored for enhancing 

anomaly detection applications. These algorithms do not necessarily fall under the 

CI category, though they are similarly data-driven, and are often used alongside CI 

classifiers to enhance performance. [27] and [24] present a detailed comparison of 

multiple statistical modeling methods. Multiple experiments were run using Dis-

crete Fourier Transform (DFT), Discrete Wavelet Transform (DWT), Principal 

Component Analysis (PCA), S-Transform, and Shapelet algorithms on Phasor 

Measurement Unit (PMU) fault and generation-loss datasets. Each method was ver-

ified using various KNN and SVM classifiers. The authors show that the more re-

cent Shapelet methods outperformed all other compared methods. Interestingly, the 

authors also note that feeding raw data into the classifiers often outperformed classic 

statistical methods. PMU data was also used in [23] to test a kernel principle com-

ponent analysis (kPCA) method for anomaly detection in high-resolution micro-

PMUs. The kPCA was combined with a novel ‘partially hidden structured’ SVM to 

classify the type of anomaly detected. The authors showed the combined algorithms 

outperformed standard decision algorithms such as Ada Boost and Decision Trees. 

These methods have also been explored for the detection of cyber-anomalies. A 

Reduction of Quality (RoQ) attack detection method is presented in [28]. Since a 

quality drop in network traffic does not always imply that a system is under attack, 

a more robust algorithm is needed to detect anomalies, as well as identify that the 

anomalies are malicious. The two-stage design uses wavelet analysis to detect ab-

rupt changes in quality in the first step. Autocorrelation analysis is then used to 

identify attack characteristics in the local network traffic. The proposed design 

achieved a 3% false negative rate with 0% false positives. A Chi-square statistics 

algorithm was proposed by [29] for tiered intrusion detection applications with mul-

tiple alarms. The Chi-square algorithm achieved detection rates of 71-100%, de-

pending on various conditions, with no false positives. 

Physics-based models implement prior expert knowledge to exploit known rela-

tionships in the available data to detect when an anomaly has impacted the system. 

Their advantage over data-driven models is that they are white-box by nature, al-

lowing users to have access to all of the information of the inputs, outputs, and 

inner-workings of the model. Another advantage of physics-based models is that 
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they do not rely on data for training meaning no data collection is necessary. How-

ever, the required expert knowledge needed to design an adequate model may not 

always be readily available. Physics-based models can also miss useful intricacies 

in a system that data-driven models can exploit. Hybrid models that incorporate 

aspects of both data-driven and physics-based models can help alleviate the weak-

nesses found in both modeling schemes. 

Physics-based modelling techniques can be seen in [30] and [24] where the au-

thors presented a physics-based method that uses energy information from PMUs 

to reconstruct a model of the system as a whole that can then be used to detect 

anomalies present in the system. A physics-of-failure mechanism is presented in 

[31] using particle-filtering, a probability density algorithm, to detect anomalies in 

brushless DC motors. A different model-based anomaly detection method is pro-

posed in [32]. This method uses ‘gaps’ between data points to define and detect 

anomalies in the data. This approach does not require any prior knowledge of the 

system and uses only a local subset of data points. The authors detail its potential 

for anomaly detection in big data and data stream applications due to its computa-

tional efficiency. 

2.2 Distributed Systems 

The distributed nature of IoT systems for city infrastructure applications adds its 

own challenges in the development of data analytics systems. The many devices 

and sensors in a city-wide IoT system can be spread out across large distances, and 

all of this data needs to be collected, analyzed, and acted upon quickly. Classic dis-

tributed system architectures implemented a central data-fusion center where all 

data is funneled to a single location, analyzed, and output analytics are sent back 

out to the system and users. While this approach is ‘efficient’ in that only one loca-

tion has to be built, maintained, and protected, there are some downsides that be-

come more problematic on large-scale distributed architectures. First, data transfers 

take time. In a city-wide IoT, emergency decision making requires all relevant in-

formation be provided as quickly as possible. This means that data transfers need to 

be as fast as possible to enable real-time analysis and system monitoring. Second, 

central data-fusion centers inherently create single-points-of-failure across the sys-

tem. This increases the chance of crippling security risks and makes localizing deg-

radation difficult. Lastly, not all data may be necessary for global degradation anal-

ysis. Certain data-streams from devices and sensors in the network may only be 

relevant to the health of their respective device or subsystem meaning including 

them in a global degradation analysis design may be unnecessarily increasing the 

computational overhead of the system. 

A common design method used to alleviate these issues is to decentralize the 

system such that multiple localized subsystems perform their degradation analysis 

as independently as possible. Using decentralized subsystems allows for shorter 
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data transfers as each subsystem data center should be local to the data sources fed 

into it. Subsystems reduce single points of failure as each subsystem can continue 

to run independently if another subsystem is shut down. Subsystem analytics could 

also help identify the source and cause of the degradation. The computational over-

head inherent in high-dimensional heterogeneous data sets can be reduced since 

each subsystem only uses the data it needs. Additionally, if a central data-fusion 

center is needed for global degradation analytics, subsystems can report device and 

sensor information as needed, or only provide a subsystem overview reducing the 

amount of network traffic and necessary computational overhead and the central 

location.  However, it should be kept in mind that in any complex system like smart 

city IoT infrastructure, crucial interdependencies may exist across all data sources. 

In a system where degradation in one area can have huge impacts on other aspects 

of the system and/or the wellbeing of city residents, care must be taken to ensure 

the communication of the interdependencies between subsystems is not lost in the 

architecture design or within the implementation of knowledge- and data-fusion 

techniques. 

A fully decentralized CPS design is proposed in [35] that uses relay-assisted 

sensor networks. Their design makes accurate estimations by only exchanging in-

formation between neighboring sensors, using relay nodes to transmit information 

to the rest of the network. The authors show their design scheme can handle sensor 

failures, fading channels, and noisy data without making assumptions about the 

communication topology, which further enhances resilience. Another design for a 

decentralized resilient monitoring system is presented in [36]. The system quantifies 

the trustworthiness, or data quality, of the sensors by comparing readings to a known 

trustworthy source. The system is divided into subsystems through process-variable 

probabilistic-mass-function adaptations to alleviate the high-dimensionality of data 

is CPS, and knowledge fusion techniques are incorporated to ensure important in-

terconnected information between subsystems is not lost. Distributed CPS designs 

also have a layer of communication that must be taken into account. When parts of 

a CPS are separated, potentially by large distances, reliable communication is just 

as important as the control algorithms. [37] introduced a joint optimization frame-

work for control and communication. It proposes a simulated annealing-based op-

timization approach to minimize the number of control tasks sent, with the sub-

objective of minimizing energy consumption across devices during communica-

tions, and was successfully implemented on a heating, ventilating, and air condi-

tioning (HVAC) dataset. 

The increasing interconnectedness of information and communication technol-

ogies in CPS make in-depth design analysis crucial to ensure that both physical 

safety and cybersecurity requirements are met. [38] presented a formal methodol-

ogy to integrate safety and security analysis into a single framework. Their method, 

System-Theoretic Accident Model for Safety and Security (STPA-SafeSec), offers 

a top-down approach to analyze and identify constraints in both areas of cyber-

physical systems simultaneously. STPA-SafeSec focuses on the desired outcomes 

of a system, rather than using existing threats as the basis for security requirements. 
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The framework was applied to various scenarios in micro-grid systems and was 

shown to help system analysts identify critical system components along with safety 

and security impacts arising from specific vulnerabilities. 

2.3 Resilient Monitoring 

In CPS, particularly critical infrastructure, safeguards must be taken to keep the 

system stable despite device degradation from malicious attacks or natural dam-

age/degradation. Resilient system-state awareness, estimation, and anomaly detec-

tion methods are crucial for system monitoring and decision-making under highly 

dynamic conditions. Additionally, CPS can encompass large numbers of distributed 

networks. These networks can contain different data types and may span large dis-

tances, increasing both the computational and temporal overhead needed to perform 

analysis. Many CPS use a central data-fusion center to perform tasks, though this 

can create a single-point-of-failure for the entire system. 

As with anomaly detection, CI techniques have been a promising area for resil-

ience in state-of-the-art CPS architectures. [18] presented a fuzzy-neural data-fusion 

engine to model systems to create resilient state awareness. The design implements 

an ANN that models current and future system states based on historical data to 

enhance state awareness when system data is unreliable or unavailable. This was 

implemented alongside standard threshold-based alarms and a fuzzy logic-based 

anomaly detection system to further enhance the state awareness architecture. Sim-

ilarly, an adaptive neuro-fuzzy controller is presented in [19] for use in a nuclear 

power plant and was shown to be highly tolerant to faults in a variety of control 

tests. 

A model-based state estimation method using Satisfiability Modulo Theory 

(SMT) is presented in [33]. SMT uses first-order logic to create and verify models. 

The proposed design models a CPS using Boolean and convex constraints; then, the 

authors’ Imhotep-SMT uses the constraints to estimate the state and identify which 

sensors are under threat. This method was verified using simulated data, as well as 

successfully controlling an unmanned ground vehicle under adversarial attacks and 

noisy sensor data. 

CPS resilience can also be improved through the design choices made. [34] de-

scribed a theoretical framework for secure state estimation in CPS. This work dis-

cusses two ideas for system design towards state estimation: (1) system-states can-

not be accurately reconstructed if more than half of the sensors are under attack, and 

(2) if a system can be stabilized in the presence of sensor attacks, then its state can 

be accurately estimated as well. The authors use this framework to show the im-

portance of designing resilient controllers that can be used for secure state estima-

tion, rather than separately implementing secure controllers and secure estimators. 
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3 Data-Fusion and Data Alignment 

This section provides an overview of challenges and possible solutions for data-

fusion in the domains of IoT and CPS. Data-fusion is the process of combining the 

available data streams into new, less unwieldy representations by exploiting exist-

ing interdependencies in the dataset [18]. These representations are then used to 

increase the reliability and consistency of state awareness, control, modeling, and 

predictions for a CPS. Datasets generated by large scale CPS are usually high-di-

mensional (data is collected from multiple sources) and heterogeneous (data of dif-

ferent types and modalities is collected and reported). Furthermore, the collected 

data can have low or multiple resolutions, report events out of sync with other data 

sources, or just be missing  

Human effectiveness is a challenge in all contexts of human interface with in-

formation technology (IT) and operation technology (OT), including cybersecurity. 

Even within common role and responsibility area, the backgrounds, best methods 

of learning/comprehension, and physical performance vary among individuals. In 

moving towards a repeatable and low latency response to cyber-attacks, both human 

and automated response actions to cyber-events must be considered. This includes 

consideration of the most resilient effectiveness that can be achieved by adding hu-

man influence within an OT system. The human aspect of OT systems requires an 

extension of research and evaluation of the fusion and presentation of cyber-physi-

cal analytics that characterize the cyber-posture. Considering the importance of the 

cognitive and social environment, multidisciplinary exercises are planned to char-

acterize the performance of research solutions. To this end, data-fusion designs 

should be created with a focus on delivering appropriate representations of infor-

mation to the operator/consumer. 

 An extensive survey on recent data-fusion techniques and applications can 

be found in [39]. 
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3.1 Multi-Modal Data 

Multi-modal data describes data that is collected from multiple sources under 

varying conditions, such as data acquisition techniques in CPS. System modeling 

and decision-making tasks often rely on high-frequency data to achieve sufficiently 

accurate results. Data sources can have different resolutions, or sampling rates, 

meaning that one sensor may record data at 100 times per second, while another 

sensor records data only once a second. This is detrimental to the performance of 

the system as the analytics system will be forced to compare 99 fresh data points 

from the first sensor to the same static data point collected from the second sensor. 

Any important concurrent changes or interdependencies between the two sensors is 

completely lost within that second until the second sensor makes its next measure-

ment. It is often too expensive and/or time consuming to ensure that all devices meet 

the same standards, even more so if part of the infrastructure is already imple-

mented. As technology improves, newer devices may be introduced to the system 

that outperform the old ones and not every device can, or even needs to, be consist-

ently upgraded to keep up. Therefore it is necessary to have a software solution to 

handle low/multiple sample rates to ensure that there exists enough data points from 

each sensor to generate accurate analytics as often as needed. 

A method using ANNs is presented in [40] to increase state awareness by in-

creasing the spatial resolution of data. The authors’ method implemented data 

downscaling to gain increased spatial resolution, and they validated their algorithms 

on real-world CO2-concentration datasets. Similarly, [41] presented an online ANN 

method that can predict high-resolution temporal data using lower resolution sen-

sors. The authors validated their algorithm on a real-world building energy manage-

ment dataset, showing their method was more accurate than classical predictive 

models and that it could adapt to changes in building behavior. Another solution to 

the problem of data-fusion for multi-resolution data is presented in [42]. The pro-

posed surface modeling algorithm combined features with varying resolutions 

through surface reconstruction and registration using Gaussian Process (GP)-

modeling. The algorithm was validated on simulated and measured multi-surface 

data, and was significantly faster than the commonly used weighted least squares 

data-fusion (WLSDF). 

Due to the heterogeneous nature of IoT data, it is important to keep the various 

data streams synchronized. Since system input is often collected from heterogene-

ous sources, synchronization of the data streams is important for state awareness 

and control. The potentially large number of heterogeneous data sources allows for 

singular events to be observed by multiple devices at once. These data sources can 

have varying latencies due to sample rates, transmission times, and missing 

data/noise. Multiple sensors monitoring the same object can end up with unsynchro-

nized measurements, whether temporally or spatially. The sensors will all record 

the same event, but the multiple data streams will report the event happening at 
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different times. Unsynchronized data can be caused by inherent device measure-

ment latencies, physical distance from what is being monitored, transmission times, 

network issues, etc. Using data that is not synchronized can increase the difficulty 

of system-modeling and prediction tasks by introducing conflicting information 

about the system’s status and potentially malicious activity. 

Unsynchronized sensor data can lead to conflicting information in decision-

making and modeling tasks. [43] proposed a method for data alignment in sensor 

networks without the use of extra hardware or software in the sensors. The algo-

rithm uses distinguishable points in the datasets to create a link between physical 

events and time. The authors showed their method successfully reduces the tem-

poral offset between sensors, though testing was done with only two measurement 

devices. Another method for synchronizing the constant spatiotemporal offsets in 

measurement devices is shown in [44]. The authors presented an offline method to 

calculate the offsets using continuous state representation using a single estimator 

rather than the two-stage designs of previously established methods. This was 

shown to generate highly accurate offset estimations on several combinations of 

heterogeneous sensors. 

Data-streams can also be incomplete or uncertain. Data sources can be compro-

mised, temporarily disabled, or physically broken causing uncertainty in the IoT 

control systems. Trust metrics should be implemented so when conflicting data is 

presented to the system, determining which data sources can be trusted and which 

sources should be discarded can be done quickly to avoid unwanted consequences 

on the control side. Incomplete data should notify operators so that measures can be 

taken to restore the data source to its operational state, and safeguards should be in 

place to adjust the control and state awareness models in the presence of the missing 

data, or at the least notify users of a potential decrease in operational accuracy so 

any necessary risk assessments can be properly made before any actions are taken. 

To help analysis on incomplete data, [45] presented a framework for rapid 

knowledge discovery from potentially incomplete datasets called structured data-

fusion (SDF). SDF implements multidimensional arrays (tensors) so that users can 

quickly create and change libraries of processing methods, or factorizations. This 

allows users to work towards finding solutions from incomplete data faster and with 

reduced overhead. 

When multiple sources provide conflicting data about an event, a method for 

choosing which sources to trust and which to disregard needs to be in place. [46] 

presented an algorithm for conflict resolution in heterogeneous datasets through 

“source-reliability estimation.” The authors implemented an optimization model 

where source trust weights are continuously updated for each source based on their 

distance from known truths derived from confirmed reliable sources in the system. 

The optimization problem was tested on multiple real-world and simulated multi-

source datasets and was shown to outperform other popular conflict resolution 

methods, such as the Gaussian Truth Model. A multi-sensor data-fusion approach 

to fall classification is presented in [47]. The authors presented a novel approach for 

daily activity and fall detection for individuals using accelerometer and gyroscope 
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data collected from a smartphone, along with user-specific measurements (i.e., 

height, weight, etc.). The authors combined the available data using Receiver Op-

erating Characteristic (ROC) theory and then input the combined data into a thresh-

old classification algorithm. 

A fast-growing field that relies on cyber-physical data-fusion is autonomous ve-

hicles. These systems require fast and accurate data-fusion to make life-and-death 

decisions in real-time. The unique challenges presented by autonomous vehicles 

may produce solutions and provide insight into problems faced by other control 

systems. [48] proposed a data-fusion method to increase performance from incom-

plete multi-sensor systems, specifically for auto traffic in urban areas. The authors 

used Multiple Linear Regression (MLR) models with historical taxi global position-

ing system (GPS) data to extract spatiotemporal traffic-state correlations. This in-

formation is used to fill in data gaps to increase the accuracy of other sensors. His-

torical data correlations could be implemented to make predictions in case of sensor 

failure, enabling other devices to make accurate decisions without ignoring the in-

formation of the failed device. Authors also noted the use of data-centric parallel-

ization for handling large multisensory datasets, but no specifics were noted. [49] 

proposed a new model for describing moving objects using meta-information from 

multiple sources and global relationships to other objects to reduce measurement 

and sampling errors present in existing models. The authors used this model to de-

velop a new map-matching algorithm, IF-Matching (Information Fusion Matching). 

This algorithm outperformed Spatio-Temporal Matching and performed as well as 

the ACM Geographic Information Systems Cup 2012 winner on city-wide trajec-

tory data. 

3.2 Data Alignment/Tailoring 

Because of the potentially large scale of CPS data, displaying all of the infor-

mation that is available can be overwhelming and unnecessary for the consumer. 

Finding and reporting only the information that is relevant to the consumer and the 

current/predicted system state may help improve decision-making response-time, 

accuracy, and reproducibility. 

Since CPSs often contain large amounts of data from multiple sources, feature 

selection is a crucial component in anti-system architecture. Selecting the most rel-

evant data and sources can improve both the accuracy and speed of decision-making 

tasks, as well as enhance understanding and system awareness. [50] showed a factor 

analysis method for feature selection using probabilistic kernels that outperformed 

common factor analysis methods for physical degradation monitoring. The selected 

feature sets were verified using support vector regression. A unique feature selec-

tion paradigm is model predictive control (MPC), which is a commonly used and 

effective technique for process control in industry. This technique models the dy-

namics of a plant to optimize input data based on predictions of future behavior. A 
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MPC algorithm for modeling non-linear systems using neural networks is proposed 

by [51]. The authors use feed-forward neural networks to create a parameter-vary-

ing MPC for use in tracking a system with partially unknown dynamics over a set 

of operating points. The algorithm was validated on simulated tank and tubular re-

actor systems. 

In critical infrastructure systems, the final decision is left to a human operator. 

The operator must look at the data and possible countermeasures supplied by the 

system and make a choice on how best to deal with the situation. Often, all coun-

termeasures are given equal weight regardless of the situation. [52] proposed a 

method using the analytic hierarchy process to suggest alternate recovery options to 

the operator based on specific criteria (e.g., economic, security, social, environmen-

tal). This method was then applied to an intrusion detection system that could sug-

gest alternative actions based on the input criteria. 

In large-scale CPSs, end-users require efficient access to the available data. A 

data management system for healthcare applications that focuses on data accessi-

bility is presented in [53]. The proposed cyber-physical patient-centric healthcare 

system incorporates cloud and big-data analytics for data collection, management, 

and application service layers in the system. The data-collection layer combines 

heterogeneous data nodes with adapters to give nodes access to the system and vice-

versa. The data-management layer incorporates a distributed file-storage system 

with a distributed parallel computing framework to ensure efficient data storage and 

retrieval, along with real-time and offline data analysis of the data. Finally, the ap-

plication service layer supplies operational resources for developers and end-users, 

such as data access and visualizations, testbeds, security management, etc. 

 

4 Data Visualization 

This section provides a brief review of recent research conducted in visualiza-

tion, with a focus on data-fusion for cyber-physical systems. Accurate visual repre-

sentations of information is essential for any large scale system. Visualizations in-

form operators and consumers of how the system is running, health metrics, and can 

identify problem areas. Intuitive visualizations aid and simplify human-machine in-

teraction by making relationships in the data more apparent and facilitating efficient 

decision making. The large size of the datasets available in a city-wide IoT applica-

tion makes visualization a difficult task. It is not realistic to present all of the data 

in a single interface because the interface will be cluttered and unintuitive. While 

data-fusion reduces and exploits correlations among huge data streams, visualiza-

tion plays a critical role in human understanding of this data. Visualization simpli-

fies human-machine interaction. Accurate visualization of information can make 

previously unknown relationships apparent and facilitate faster, better decision-

making.  
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4.1 Dynamic Visualization 

 Dynamic visualizations change how the data is represented in real time which 

allows users to quickly understand where changes in the system are happening and 

if they have cause cascading failures. Dynamic data visualization allows for visual 

representations of data that can be altered as the represented data changes. This can 

allow for quick and intuitive understanding of changes in the system as size, color, 

length, etc., is altered. in an IoT design, devices can be connected to and communi-

cate with each other over a network. This can allow for an efficient peer-to-peer 

resource sharing system to be implemented across the system. Resource sharing 

adds an additional layer to visualization by allowing local visual implementations 

to change dynamically based on global data as well. It is also important that differ-

ent visualization nodes are consistent in their presentation to users. This helps users 

learn how the display layout implemented by the system works, and ensures users 

won’t have to relearn the basic navigation when introduced to a new display. 

 Of course, any visualization system that emphasizes some data over others is 

deciding on behalf of the user. Although it may do so according to user-stated pref-

erences, this decision can also form a filter bubble [54], where important infor-

mation may be suppressed because the user has not deemed it important. Filter bub-

bles become a self-perpetuating confirmation bias that may blind rather than reveal. 

Visualization developers implicitly trust their creations, but for critical tasks such 

as cybersecurity, operators tend to distrust decisions and simplifications made by 

visualization [55]. Thus, all visualization research should take user-trust into ac-

count and enable users to understand what is being hidden by the things that are 

being emphasized. 
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One method for dynamically optimizing the area of relevant images on a display 

is shown by [56]. The authors propose an optimization algorithm that will display a 

set of objects using the entire display area, but sizing images based on the relevance 

of information contained in each based on a user-defined context. The proposed 

Cyber-Physical Directory Framework was implemented and tested using mobile de-

vices. Individual users could select their preferences (e.g., favorite foods/movie 

genres), and the display would resize information according to the user-defined data 

when the device was pointed at it (see Figure 1). A more robust version of the algo-

rithm is shown by [57], where cloud data is included to incorporate more user-spe-

cific data than the previous work. This technique could employ different metrics to 

dynamically resize system information as certain data streams become more rele-

vant to system stability. 

4.2 Top-Down Visualization 

In a smart urban environment application, the system infrastructure will be 

spread out widely with many small components. This is a difficult system to visu-

alize as operators and consumers may need access to very low level system infor-

mation, but not all of the data can be shown at one. A potential visualization scheme 

to alleviate this problem is a high level, top-down design with an information ‘drill-

down’ to access lower level data representations. An initial visualization may only 

show a map of the city with the major areas or landmarks marked. Users could then 

select an area to open a new visualization with more detailed information about the 

selected domain. This tiered design can continue for as many layers as are needed, 

though too many layers can be counter-productive. 

A visualization scheme that could incorporate the top-down design previously 

discussed as well as incorporate dynamic data representations is presented in [59]. 

The authors presented a study of several techniques that can be used to visualize 

entity interoperability in cyber-physical systems, specifically the Node-Link Dia-

gram (NLD) and corresponding balloon layout. An NLD is a tree-like graph struc-

ture with nodes being entities in the tool chain and links being relationships between 

the tools. Each node and link can be resized and color coded to represent different 

qualitative and quantitative information. However, the authors note that an NLD 

could become unwieldy and ambiguous as the size of the represented system in-

creases. To alleviate this problem, the balloon layout is suggested. This layout clus-

ters tools into smaller NLDs contained in parent nodes (see Figure 2), and the parent 

nodes create a higher level NLD. 
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4.3 Visualization Techniques 

 A visualization design that is directly applicable to CPS is shown in [60]. The 

authors proposed a visual analytics concept to better handle the problems of critical 

infrastructure monitoring, cascading effects in infrastructure, and crisis response 

management. Their method proposes various visualization techniques to combine 

data from multiple infrastructures into a unified overview to assist operators in de-

cision-making. Specifically, the authors’ method aims to highlight important events, 

portray crisis events towards understanding in interdisciplinary teams, and present 

system details and controls when needed. The presented design was tested on a real 

power grid with an interconnected digital communication grid, and was shown to 

consistently highlight current and future events in the tested infrastructures (see Fig-

ure 3). 

Certain applications may require end-users to visualize data directly rather than 

relying on a high-level system representation. A method for visualizing and explor-

ing patterns in temporal multivariate data is presented by [61]. The authors create 

temporal multidimensional scaling (MDS) plots that consider temporal-event infor-

mation from the multivariate data to create sequences of one-dimensional similarity 

mappings. In the MDS plots, the x-axis is time and the y-axis is a similarity metric 

which visually groups similar events together over time. Furthermore, the multivar-

iate nature of the data is visualized through a sequenced diversity matrix shown 

underneath the temporal MDS plots as a heat map (see Figure 4). The colors of the 

matrix elements represent the diversity metrics, with black representing low diver-

sity and white high diversity, to show the correlations between features. This visu-

alization, coupled with a clustering algorithm to assist in event detection, allows 

users to find, analyze, and define reoccurring patterns in the data. 

A newer area in visualization technology are 3D visualizations. Using 3D tech-

nology, more information can be kept within the reduced dataset while maintaining 

an accessible form for human visualization and intuition. 3D technology can also 

allow users to ‘step into’ and immerse themselves in the data. However, 3D visual-

izations also induce occlusion, hiding artifacts behind one another. 

Visualizing self-organizing maps (SOMs) in a 3D environment was presented in 

[62] by using an immersive visualization technology called the Cave Automatic 

Virtual Environment (CAVE). SOMs are typically used for dimensionality reduc-

tion and feature selection to transform high-dimensional data into lower spaces that 

can be easier for humans to understand. The CAVE technology uses motion track-

ing to allow users to fully immerse themselves in the data (see Figure 5). The virtual 

environment is updated as users move around and interact with the data using a 

wand tool. CAVEs excel at collaborative visualization where multiple users simul-

taneously explore a dataset, but they have practical limitations. Often, direct manip-

ulation of CAVE objects is difficult or impossible, and they are not yet considered 

practical for use in other than exploratory and academic environments where there 

is no time sensitivity. It remains to be seen whether the technology can make the 
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leap to operational usability. The authors tested the CAVE-SOM method on several 

benchmark datasets and a wind-power dataset. 

[63] presented a project aiming to provide end-users with effective use of quan-

titative and qualitative 3D visualization and 2D analysis for big data applications. 

This work implements and improves upon a visualization method called Particle 

Base Volume Rendering (PBVR) for parallel volume rendering. PBVR and its im-

provements can run on a Graphics Processing Unit architecture, allowing for inter-

active use without having to pause to reload information. Other visualizations in-

clude contour maps and multidimensional transfer functions. A 4D cross-

correlation, volume-data environment is in development. 

 

5 Conclusions 

This chapter outlined several challenges identified in cyber-physical system de-

sign, with potential solutions from recent publications. Discussions for establishing 

resilient CPS architectures that leverage IoT devices were outlined. Providing com-

plete, reliable, and useful information is essential for the systems and operator’s 

understanding and decision-making. Developing an accurate state awareness sys-

tem, along with robust anomaly detection techniques, is crucial to providing users 

with the relevant information and models needed to recognize threats and coordi-

nate effective responses. Data-driven CI algorithms have shown promising solu-

tions for state awareness and prediction, attack detection, and decision-making with 

compromised data. Many of these algorithms are ‘online,’ meaning they can con-

tinue to learn after deployment to potentially adapt to new anomalies in the system, 

and provide information that is most relevant to the system and/or the decision-

makers’ needs. However, the pattern-matching nature of data-driven algorithms are 

subject to problems, such as spoofing, limited data-sets, and overfitting. Addition-

ally, the black-box nature of CI designs do not allow for in-explanations or in-depth 

analysis of why the system behaves a certain way. Model-based and physics-based 

designs are other commonly used methodologies. These systems do not rely on data 

for generation and are white-box, which allows end-users and analysts to understand 

the inner workings of the system. However, creating these models require expert 

knowledge of how the system operates, and they won’t be able to capture potential 

intricacies in the data that data-driven pattern matching methods can. These two 

approaches to modelling could be used together in a hybrid-modelling approach so 

that each methods strengths can cover the others weaknesses, though to the best of 

the authors’ knowledge, no work has been presented on this topic. 

Managing large-scale CPS provides its own challenges. Many architectures rely 

on a central data-fusion center that collects data from distant locations, makes deci-

sions, and sends data back out. These data transfers take time and create single-
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points-of-failure across the network. A common solution in many large-scale sys-

tems is decentralizing the system into multiple, localized subsystems that collect 

and analyze data independently. Allowing the subsystems to make calculations and 

decisions from local data can reduce the computational overhead inherent in high-

dimensional heterogeneous datasets and would require only essential information 

be sent to a system controller/operator on an as-needed basis. It also allows for mul-

tiple, subsystem specific algorithms to be implemented, though steps should be 

taken to ensure important interdependencies between subsystems are not lost by 

implementing knowledge-fusion or other techniques. 

CPS datasets are usually high-dimensional, heterogeneous datasets that may 

have low/multi-resolutions, temporally unsynchronized features, etc. Because of the 

large amounts of data needed for system-modeling and prediction, it is crucial that 

the information be consistent and synced temporally. Machine-learning approaches 

have promising applications for datasets containing low or varying sample rates. 

Artificial neural networks in particular were shown to be able to increase both tem-

poral and spatial resolutions on building sensor data. Another statistical machine-

learning method, Gaussian Process Modeling, was used to combine multiple fea-

tures with different resolutions. Due to varying transmission times and device la-

tencies, CPS devices may report measurements as being recorded simultaneously, 

though in reality are not matched temporally. 

Though CPS can provide a lot of data, not all of it may be relevant to a consumer. 

Recognizing and reporting the most relevant system information can increase the 

speed and reproducibility of the decision-making and analysis process. An algo-

rithm to improve prediction quality for human-in-the-loop control systems was 

shown for emergency response applications. Using the analytic hierarchy process, 

the algorithm can suggest a hierarchy of recovery options derived from user-defined 

metrics indicating how important different criteria are (e.g., economic, security, en-

vironmental) for that system. These metrics can be defined for the needs of an indi-

vidual, plant, or company to help ensure design-specific requirements are met in 

critical decision-making. Displaying user-relevant information is also an important 

aspect in visualization. Too much data can clutter a screen and make it difficult to 

locate what the consumer needs, but too little information will not provide robust 

system representation. However, the information needs to be sourced from the sys-

tem globally and not be too focused on local activity. Visualization designs through-

out a system should be consistent in their presentation to help users navigate all 

displays without having to relearn basic navigation of a display. 
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